Tag Archives: force-velocity relationship

Understanding Muscle Force During Cyclic Movements: Does Titin Play a Role?

During cyclic every day movements, such as running, jumping, and walking, our muscles go through cycles of shortening and stretching. While there has been extensive research on muscle function for the last 50 years, there is no current muscle model that can accurately predict natural movements. For example, when active muscle is stretched, it produces more force than expected based on current theories of muscle contraction. Likewise, when active muscle shortens, it produces less force than predicted by current theories. For years, scientists have been measuring properties of muscles under highly controlled conditions. The classic force-velocity relationship shows that force generated by a muscle is inversely related to the velocity of the shortening. However, this relationship changes during natural, more life-like movements. Recent work suggests that for a given velocity, muscle force is higher during cyclic contractions than the traditional force-velocity relationship. My research investigates the role of the elastic protein titin in the force-velocity relationship measured under different conditions. Using a mouse model with a mutation in titin, I conducted in vitro muscle experiments to compare the force-velocity relationship in cyclic and controlled (isotonic) conditions. Hopefully, my results will shed light on titin’s role as a spring in active muscle. If titin truly does store energy like a spring, this could account for the extra force and lack of force in the stretch-shortening cycles. This research will allow us to better understand movement on a whole organism scale, which can prove quite useful in prosthetic design and bioengineering, for example.

Much like the active muscle, doing research in a lab goes through cycles, except instead of stretch-shortening cycles, it is periods of challenge and reward. Some days, you go into lab, collect great data, and leave feeling utterly fulfilled. However, other days, you go into lab and it seems as though you spent your entire day trouble-shooting. Mainly though, our experiments worked and we were able to collect useable data. We have yet to fully analyze our results, but preliminary results seem to support our expectations.

In general, I have found my lab group experience to be very similar to my experience with playing college soccer. Both activities involve a group of people working toward a common goal. While in soccer, your team is working together to win, in the lab, there are many scientists working together to uncover a truth. Collecting and analyzing data is a collaborative effort and, to me, that was the best part of summer research. Working as part of a lab team allows you the opportunity to constantly learn and build off of others. It teaches you to adapt, be open to new ideas, and to use your time efficiently. The worst part of day-to-day life in the lab, is that sometimes data collection does not go as planned and you need to figure out what went wrong.  However, this aspect doesn’t seem so bad when you have your lab team to help brainstorm.

Overall, my time in the lab has been an incredible experience. It has helped me grow as both an individual and as a scientist and has stimulated my interest in future research opportunities. It is an experience I would highly recommend to other undergraduate students!

Lindsay Piwinski attends Pitzer College in Claremont, CA. She is a 2017 Undergraduate Summer Research Fellow (UGSRF) doing research with Drs. Jenna Monroy (Pitzer College) and Kiisa Nishikawa (Northern Arizona University, Flagstaff, AZ). She hopes to attend graduate school in the future and continue pursuing research.