Tag Archives: STRIDE

Why are frogs able to survive in low oxygen conditions?
Bianca Okhaifor
2020, senior, biology major/chemistry minor
University of North Carolina at Greensboro

My Research Project

Credit: Drew R. Davis, Amphibians and Reptiles of South Dakota

Most living organisms rely heavily on oxygen (O2), a major component in an organism’s biochemical and metabolic functions. This isespecially important for the brain. When the brain is deprived of O2), injury and life-threatening situations can occur. We can learn a great deal from a neural system that has evolved to combat hypoxia (low oxygen levels) and anoxia (no oxygen) in the brain. During my summer research project, I focused on the Lithobates catesbeianus, most commonly known as the American bullfrog.

Though respiratory network activity ceases during severe hypoxia, the network is able to generate again upon reintroduction of O2 and return to its normal functions (Winmill RE, et al). How is this possible? By building upon background information, we hypothesized that inhibition of ATP synthesis through different routes in the presence of oxygen would resemble the anoxic response if metabolic failure contributes to the network shutdown. To test this hypothesis, I focused on the bullfrog’s cranial nerves and used them to record electrical brain activity. Depending on which part of the experiment I completed each day, a certain drug was administered to the brainstem to analyze its effects. Our findings showed that neurons in the frog brain can survive without ATP synthesis for extended periods of time with no impact on function after reoxygenation, suggesting that metabolism is an important contributor to allowing bullfrogs to survive anoxia.

Realities of Research

Artificial brain fluid on magnetic stirrer, Dr. Joseph Santin lab, UNC Greensboro

Research is one of the most important aspects of human advancement and development. Unsurprisingly, scientists have great responsibilities that pose many challenges. One of the biggest challenges of a scientist is the reality that research is unpredictable. Although my lab’s results generally supported my hypothesis, there were days when experiments did not work and I had to backtrack, figure out my mistakes and start over. Unpredictable results can also mean that your day is too unpredictable. I had to take initiative for what needed to be done and be responsible enough to make it happen. It surprised me that I wasn’t told what I needed to do every day, minute by minute. I had to take charge of my project. This is especially true for scientists who may be doing novel research or research not found in the available literature. While this aspect of research is challenging, it is also fun to brainstorm the best way to go about your research. For instance, I had to categorize and analyze the data collected of neuronal motor output of the bullfrogs.; This had not been done before and Ihad to learn analysis techniques as well as use my creativity and knowledge to create a system of categorization. Being able to highlight my passion for problem solving and creativity was what kept me so interested in research.

Life as a Scientist

White coats, colorful chemicals and a crazy, wild lab. This “Hollywood stereotype” may be what comes to mind for some people when they think about a scientist. As a first-generation minority, that’s what came to my mind as well. I had not been exposed to research as a career and only knew what I saw in the media. It was not until I received the 2019 Short-Term Research Education Program to Increase Diversity in Health-Related Research (STRIDE) fellowship that I was able to understand the life of a scientist—and it was drastically different from what I expected.

In my experience, there is no “day-to-day life” of a scientist. Every day was different. One day I may have dissected a brain from a frog, while the next, I analyzed data and the day after, I was expanding my knowledge further by reading scientific literature. Some days, I had lots of hands-on work and was really busy and other days, I had plenty of downtime. While this dynamic work environment was fun and exciting, it was also very challenging for me. I was fortunate enough, and will be forever grateful, for being placed within a lab team that helped me work through my hesitations this summer. My team consisted of another undergraduate student, a masters student and my principal investigator. Having these three people in my circle allowed me to transcend the expectations I had for myself. I hope that I can one day use this experience to expose young, first-generation minorities to what it means to be a scientist early in their careers. This is a tool I wish I had when I was younger.

Reference:

Winmill RE, et al. “Development of the Respiratory Response to Hypoxia in the Isolated Brainstem of the Bullfrog Rana Catesbeiana.” The Journal of Experimental Biology, vol. 208, 2005, pp. 213–22

Bianca Okhaifor is a senior at the University of North Carolina at Greensboro. She is a 2019 Short-Term Research Education Program to Increase Diversity in Health-Related Research (STRIDE) Fellow working in Dr. Joseph Santin’s lab at the University of North Carolina at Greensboro. Bianca’s fellowship is funded by the APS and a grant from the National Heart, Lung and Blood Institute (Grant #1 R25 HL115473-01). After graduation, Bianca plans to pursue a career as a physician and clinical researcher to focusing on her passion of working specifically with minority children with little to no access to healthcare.

PTSD: The Unknown Truth About the Sexes
Touré Jones
Junior, human health major
Emory University

My Research Project

Post-traumatic stress disorder (PTSD) is a debilitating mental illness that heavily impacts an individual’s physical, mental and emotional health. One overlooked, but very important, consequence of this illness is that individuals with PTSD have an increased risk of developing hypertension and cardiovascular disease1. Past research has revealed that those with PTSD have an exaggerated blood pressure and heart rate response and a blunted heart rate variability response to acute mental stress1. While these studies have improved our understanding of PTSD and the physiological effects it has, they don’t highlight a very important factor: the possibility that it affects men and women differently.

PTSD studies have typically been either all men, or a very few women included in a mostly male population. The research has produced results that primarily focus on male reactivity2, andhas neglected an entire demographic of PTSD victims that seem to have a different response. While men and women have a similar rate of experiencing traumatic events, women are twice as likely to be diagnosed with PTSD3. In addition, healthy premenopausal women have a lower risk of developing cardiovascular disease compared to men, although once diagnosed with PTSD, this risk increases three times, placing the women at higher risk3. Given these biological differences, the purpose of this study was to determine if there is also a sex difference in autonomic and cardiovascular responses to acute mental stress in individuals who have PTSD.

Our study consisted of 33 individuals— 15 women and 18 men—for a total of two visits. The first visit was a screening where we took the volunteers’ vital signs, gave them PTSD surveys to determine the severity of their condition and checked for exclusion criteria to ensure they could be in the study. The second visit was a micro visit, where we recorded experimental data. We measured the study subjects’ blood pressure, heart rate and muscle sympathetic nerve activity at baseline, then those same recordings during three minutes of mental stress. Beat-to- beat blood pressure was recorded using a continuous noninvasive arterial pressure (CNAP) monitor and heart rate was recorded via an electrocardiogram (EKG). Muscle sympathetic nerve activity (MSNA) was recorded via the microneurography procedure. Mental arithmetic served as our mental stressor: the participants subtracted a given number from a numbered index card continuously for three minutes while a “coach” was pressuring them to give an answer as quickly as possible. 

At baseline, measurements for age, body mass index, clinician-administered PTSD scale (CAPS) and PSTD checklist–military version (PCLM) survey scores, blood pressure and heart rate variability were all comparable between the sexes. However, MSNA was significantly different. This was a very interesting find, as we were not anticipating this result. In healthy populations, men have a higher MSNA at rest than women. Based on this data, it seems that women with PTSD have a higher resting MSNA than men. In response to mental stress, systolic arterial pressure was higher in women than men, while diastolic arterial pressure was comparable between the two groups. In addition, heart rate seemed to be higher in women than men, but had not reached significance, although MSNA in response to mental stress was significantly higher in women compared to men. Even more interesting was the root mean square of the successive differences (RMSSD), the time domain measurement of parasympathetic nervous system activity, was comparable between both groups, but the high frequency domain for parasympathetic response showed women having a decreased response to mental stress than men.

In conclusion, resting MSNA was significantly higher in the women than the men. Systolic arterial pressure reactivity to mental arithmetic as higher in women with PTSD compared to men, while diastolic arterial pressure reactivity was comparable between the groups. Heart rate was comparable between women and men with PTSD. MSNA reactivity to mental stress was higher in women than men while heart failure response was blunted in women compared to men suggesting greater dysregulation of the autonomic nervous system in women with PTSD. RMSSD was comparable between men and women in response to mental stress.

In summary, women with PTSD in our study have an increased blood pressure and sympathetic response in addition to a blunted parasympathetic response to acute mental stress. These results provide insight into the mechanisms that are associated with a higher risk of cardiovascular disease in women with PTSD.

Realities of Research

Doing research in a lab was very different from my high school research experiences. For one, this was a clinical lab, so I was working with people every day, which was a rewarding experience. Also, my lab team was made up of very intelligent, cohesive and welcoming individuals, so during every study I was able to learn something new while having a good time. I also had to learn how to set up the lab for the studies we would be conducting, so I had to understand the procedure being performed and how to prepare for it. For example, one procedure we performed was microneurography— a qualified lab member inserted a tungsten electrode into the participants’ peroneal nerve to record sympathetic activity. 

What surprised me about the experience was how often research doesn’t go as planned, especially when working with people. Some study participants wouldn’t come in to the lab as scheduled, or if they did, they didn’t want to go forward with certain procedures for a variety of reasons. Because of this, some patients didn’t have all of the data I anticipated collecting, but that was just a part of the research process.

As for our results, it was very rewarding to see my hard time and effort come to fruition. Some of the results I expected, but others I wasn’t expecting at all. Honestly, each result made the experience all the more exciting.

Life as a Scientist

Life this summer was challenging, but rewarding. I experience many exciting things that have provided me with good memories. The feeling that I felt once I formed graphs based on my data was great and was the best part of the experience; it was the result of my hard work and dedication to my project.

The worst part of the experience would have to be the hours I spent trying to understand certain topics by myself. While learning more about what I am doing interested me, there was some information I needed to know but took me a little while to grasp, which often annoyed me. However, once I did understand it, the passion I had for my project increased. Finally, my lab team was instrumental in me developing this project, especially my mentor. Her mentorship has taught me so much during the weeks I spent with her this summer and I am excited to learn even more.

References:

    1. Edmondson D, von Kanel R. Post-traumatic stress disorder and cardiovascular disease. The Lancet Psychiatry 2017;4:320-9.
    2. Park, J., Marvar, P. J., Liao, P., et al. (2017). Baroreflex dysfunction and augmented sympathetic nerve responses during mental stress in veterans with post-traumatic stress disorder. The Journal of Physiology, 595(14), 4893–4908. doi:10.1113/JP274269
    3. Kubzansky LD, Koenen KC, Jones C, Eaton WW. A prospective study of posttraumatic stress disorder symptoms and coronary heart disease in women. Health psychology : Official Journal of the Division of Health Psychology, American Psychological Association 2009;28:125-30.

Touré Jones is a junior majoring in human health at Emory University in Atlanta. He is a 2019 Short-Term Research Education Program to Increase Diversity in Health-Related Research (STRIDE) Fellow working in Dr. Jeanie Park’s lab also at Emory University. Touré’s fellowship is funded by APS and a grant from the National Heart, Lung, and Blood Institute (Grant #1: R25 HL115473-01). After graduation, Touré plans on attending medical school to pursue his dreams of being a physician.

A Summer Study: Respiratory Rehabilitation After Spinal Cord Injury
Amari Thomas
Senior, Biology
University of Florida
2019 STRIDE Fellow

My Research Project

The human body central nervous system.

Because the central nervous system is in control of every process taking place within the body, an injury to this system can be detrimental and sometimes fatal. Injuries to the cervical region of our spinal cord can be extremely difficult because they often lead to breathing impairment. The phrenic motor nucleus in this region innervates our diaphragm, which controls inhalation by creating a negative pressure ventilation system.

It has been shown that acute intermittent levels of low oxygen help to address the concern for the functional recovery of breathing after injury. This occurs because the phrenic motor nucleus elicits neuroplasticity. A key protein, phosphorylated-ERK (p-ERK), is involved mechanistically in the phrenic motor nuclei response to varying levels of low oxygen.

P-ERK’s expression can be analyzed through epifluorescent microscopy. The cervical spinal cord tissues were harvested from rodents and stained using inmunoflouresence, – a procedure that stains the tissues in a way that allows them to emit certain colors when viewed on a microscope. We injected cholera toxin B between the pleural cavity in the outer layers of the rodents’ lungs before injury, which allowed for selective localization of phrenic neurons. We imaged this tissue to assess different expression patterns of p-ERK after spinal injury and varying levels of intermittent hypoxia.

Once we analyzed the expression of p-ERK in phrenic motor neurons after spinal injury and intermittent hypoxia we were able to develop a better understanding of intermittent hypoxia and its elicited plasticity after spinal injury. This research will guide therapeutic strategies for improving breathing in people with spinal injury.

Life as a Scientist

Using rat models as a method for testing before human clinical trials.

My experience as a scientist this summer opened my eyes to the realities that occur behind the scenes of groundbreaking research. For example, I always believed clinical trials to be amazing advancements in research, but never truly understood all of the experiments that take place before humans are even brought into the picture. The work done in our lab on rats propose a model for human experimentation. This opportunity has also made me realize that things may not always go exactly as planned the first time around and that is perfectly okay. Often, these trials and errors allow us to learn more about the research we are doing in order to propose different hypotheses or use alternate methods. There is no right or wrong when it comes to research because it is a learning and growing experience.

Acknowledgements

Elisa Gonzalez-Rothi, DPT, PhD, Research Assistant Professor, University of Florida Department of Physical Therapy

Gordon S. Mitchell, PhD, Professor of Physical Therapy, University of Florida Department of Physical Therapy

Latoya Allen, PhD, University of Florida Department of Neuroscience

Marissa Ciesla, PhD, University of Florida Department of Neuroscience

Amari Thomas is a first-generation college student majoring in biology at the University of Florida in Gainesville. She was born and raised in Miami Gardens, Florida, where access to research labs and quality educational resources are minimal. Due to her academic success in grade-school and extracurricular involvement, Amari was accepted into one of the top universities in the country for her undergraduate education. She has continued to thrive in her undergraduate career by gaining dean’s list awards for academics, mentorship positions and an outstanding fellowship from the American Physiological Society. By working in a research lab, Amari has expanded her career options and strengthened her knowledge of the human body and its many processes. She hopes to obtain a medical license after graduating and plans to apply the knowledge learned in the research lab. Amari is a 2019 Short-Term Research Education Program to Increase Diversity in Health-Related Research (STRIDE) Fellow in the lab of Dr. Elisa Gonzalez-Rothi at the University of Florida in Gainesville. Amari’s fellowship is funded by the National Heart, Lung and Blood Institute (NHLBI; R25 HL115473-01).

The Circadian Rhythm’s Role in the Kidney
Emilio Roig
Junior, Microbiology & Cell Science
University of Florida
2019 STRIDE Fellow

My Research Project

According to the Centers for Disease Control and Prevention (CDC), one out of every three people in U.S. is affected by high blood pressure, which is also known as hypertension. Hypertension is a serious health concern because it significantly increases the risk of heart disease, stroke and kidney damage. In healthy individuals, blood pressure dips at night, allowing the heart to experience a period of time in which it is not under significant stress. However, some individuals have been diagnosed with what is termed as “non-dipping” hypertension in which blood pressure is constantly elevated, putting them at greater risk for cardiovascular disease. The fluctuation of blood pressure between night and day is regulated by our body’s circadian clock. The circadian clock is the body’s intrinsic time keeper, telling us when to wake up, when to eat and when to sleep. At the molecular level, every cell in the body also contains its own clock, including kidney cells. To better understand the circadian contribution to blood pressure, my research project for the summer of 2019 has been focused on studying the role of Per1, is one of the main circadian regulators in the kidney. The kidneys are responsible for filtering blood and are directly involved in the control of blood pressure. By removing the circadian rhythm gene Per1 from a specific region of the kidney, its contribution to blood pressure can be determined by comparing it to normal individuals that have the Per1 gene. Our goal for this project was to demonstrate why some individuals develop hypertension or fail don’t experience the normal drop in blood pressure at rest. Understanding the mechanism behind why some people develop “non-dipping” hypertension could potentially lead to better cures and therapies, thereby lowering the risk of cardiovascular disease.

Realities of Research

Even though this was not my first time working in a lab, it was the first time that I began working full time. Five days a week, my day began at 9 a.m. and would finish at 5p.m. However, sometimes I would find myself in deep thought about my project beyond those hours. I learned quickly that research is taking a step out into the unknown, meaning taking time to truly understand the complexities of the body’s physiology. Often,the results of my experiments were unexpected and generated more questions than answers. Other times the experiments would simply fail; the first Western Blot I ever attempted was an adventure. By spending a large majority of time in the lab, I have gained a new appreciation for researchers. Being a researcher takes persistence, creativity and an open mind.

Life as a Scientist

My sheer curiosity about the world is what originally drove me to become involved in research as soon as I began college. The American Physiological Society gave me the opportunity to develop as a scientist, immersing me in the vast complexities of scientific phenomena. Science can often be frustrating because things don’t always go as planned. But the moment new discoveries are made, every failure along the way becomes irrelevant. Persistence took on a new meaning for me the moment I had begun trying my own experiments, and that’s the beauty of science. When something finally is successful, it can open a whole world of possibilities.

Emilio Roig is a junior majoring in microbiology and cell science at the University of Florida (UF), located in the city of Gainesville. He is a Short-Term Research Education Program to Increase Diversity in Health-Related Research (STRIDE) Fellow working in Dr. Michelle Gumz’s lab at the UF College of Medicine. His summer of research was funded by the American Physiological Society and through a grant from the National Heart, Lung, and Blood Institute (Grant #1 R25 HL115473-01). After graduation, Emilio plans to pursue a career in medicine so that he can fulfill his dream of preventing and curing disease.

Blood Flow and Other Bodily Functions: An Investigation of Vascular Function and Endurance Sports
Andrea Rico
Junior, Health Sciences
University of Texas at El Paso
2019 STRIDE Fellow

My Research Project

My research project was focused on measuring the vascular function and rate of blood flow in arteries of the upper and lower body extremities using flow- mediated dilation (FMD) and plethysmography. We investigated the differences in vascular function on endurance sports that are upper-body predominant, lower- body predominant and mixed combination. FMD is an advanced test that uses ultrasound to measure dilation changes in the diameter of arteries, such as those in the forearm. This is a method to assess the endothelial vascular function in humans. Plethysmography measures changes in volume of blood in different extremities like the upper- or lower-body extremities. These changes are measured with blood pressure cuffs attached to a machine known as the plethysmograph. This test can dictate the amount of blood flowing through the limb and time where peak blood flow happens. It is highly effective when it is used to find changes caused by blood flow. An endurance sport is any sport that has prolonged periods of physical stress. Swimming, for example, combines both cardio and light strength exercises mostly in the upper body, which trains the body to use oxygen more efficiently. Cycling combines both cardio and light strength exercises mostly in the lower body, increasing leg strength and endurance. American football involves a lot of resistance training in both upper and lower extremities. Comparing vascular function and structure in these three sports can help to determine specific changes with training modalities.

Realities of Research

This is my first time working in a lab and my first real research project, so it was pretty scary at first. However, as time passed, I started learning something new every day, including new techniques and skills. I slowly began to understand more about my project and its importance. It has been very exciting to be able to work on this project and being able to see the results.

Life as a Scientist

Working in a lab and being able to work with individuals who share the same passion has truly being an extraordinary experience. One of the greatest things that I personally have witnessed is seeing how all lab members collaborate with one another and help each other out. It has truly been an unforgettable experience to get to know everyone and share endless memories with one another. I love being part of a lab!

Andrea Rico is a junior at the University of Texas at El Paso majoring in health sciences. She is a 2019 Short-Term Research Education Program to Increase Diversity in Health-Related Research (STRIDE) Fellow working in Dr. Gurovich’s lab. Andrea’s fellowship is funded by the American Physiological Society and through a grant from the National Heart, Lung and Blood Institute (Grant #1 R25 HL115473-01). After graduation, Andrea hopes to pursue a PhD in occupational therapy and work at a local hospital or practice.

2019 Summer of Science – ABC, PCOS, NAFLD the Summer Science Alphabet
Jessica Myer
Sophomore, Health Science
University of Missouri
2019 STRIDE Fellow

My Research Project

Infographic produced by the National Polycystic Ovarian Syndrome Association containing statistics about PCOS and its symptoms.

This summer I had the opportunity to be an American Physiological Society (APS) Short-Term Research Education Program to Increase Diversity in Health-Related Research (STRIDE) Fellow and work alongside Dr. Stanley Andrisse in the endocrinology laboratories at Howard University and Georgetown University. Our labs study the mechanisms of polycystic ovarian syndrome (PCOS), non–alcoholic fatty liver disease (NAFLD) and insulin resistance. PCOS is the leading cause of infertility among women and affects many more women than statistics suggest. As a consequence of premature use of hormonal birth control, a large population of women may be unaware that they have symptoms of PCOS. In order for our mouse model to exhibit the symptoms of PCOS, we gave them low-dose testosterone and monitored them. NAFLD is a continuum of liver inflammation that inhibits the liver’s ability to process lipids normally, which causes fat accumulation. We induced NAFLD in our mouse model by feeding a high-fat diet for 30 days before tissue extraction. We were specifically looking at the mechanisms behind the lipid accumulation in hopes of discovering how therapies for the reversal of consequences are associated with insulin resistance, NAFLD and PCOS. The better understanding of the processes will be beneficial to combating obesity and the sister diagnoses that come along with it.

Realities of Research

Example of a protein assay, which is completed to determine the concentration of proteins in each sample.

There have been many parts of research that surprised me or were not as I expected. The biggest shock to me was how long it would take to complete one process. For example, running a Western Blot —the main technique I have been doing—takes an entire day for each step. Western blots are used to detect specific proteins in samples. The entire cycle for one blot takes a week, but thankfully I was able to work with four blots at a time. I was surprised at how relaxed the lab environment was, as there was a lot of down time while tests are being run, but there is always something to work on. In the lab, I learned many techniques that were used to discover protein concentrations, RNA concentrations, protein presence and so much more. As expected, the experiments had their ups and downs. We had some great weeks of data and some days where I would take an image and not get any significant results. Overall, I would say that we made great progress this summer. Most of our results have been as expected; although, when we cross a road bump, there are many tweaks we can make. We can increase the amount of sample in our Western Blots, increase the time we block the blots between antibodies, increase wash time or increase the concentration of antibodies. If none of those steps resolve the problem, we go back to published research to see what other scientists have done and how we might be able to learn from them. We never had to start over due to error, but we did complete an extraction during my last few weeks of research which was the beginning of the sampling process.  I thought it was so cool to see exactly where the samples come from and how they are obtained. The research question has not changed. In fact, it has become more focused as we gained more data for the control and knock out samples. Our research is ongoing and I am excited to see what the future holds.

Life as a Scientist

The day-to-day life of a scientist is very rewarding. It is exciting to go into work and be able to see changes and progress that are being made. I was surprised by the laid-back environment and the independence of it all. Once I was fully trained on a technique, I was able to run it on my own and also how to correct errors. I was impressed with how much I was able to multitask in the lab. One of the best parts of working in a lab was being able to see the data come together as publishable images and also images that I took was a great experience. The biggest adjustment for me was getting up so early, since I worked in the lab—across the city—starting at 7a.m. Although this seemed so early at the beginning of the summer, it turned out to be perfect time. I was able to manage well my schedule and had the late afternoons and nights to explore the wonderful city of Washington D.C. I accomplished so much in the lab as well as had a wonderful tourist experience. The worst part of this summer was ending my summer research experience and leading back to school! I loved being in the lab and working with Tina and Bobby and the other lab assistants. Tina is about to start her third year of medical school at Howard University and Bobby went to international medical school and is applying for his Master’s in Public Health.

References

PCOS Challenge Inc. (Ed.). (n.d.). What is PCOS? Retrieved from https://www.pcoschallenge.org/what-is-pcos/

Stewart, C. (2016, November 14). Pierce BCA Protein Assay Kit For Quantitative Total Protein. Retrieved from https://www.biocompare.com/Product-Reviews/239559-Pierce-BCA-Protein-Assay-Kit-for-quantitative-total-protein/

Jessie Myer is a sophomore majoring in health science at the University of Missouri in Columbia, Mo. She is a 2019 Short-Term Research Education Program to Increase Diversity in Health-Related Research (STRIDE) Fellow working in Dr. Stanley Andrisse’s lab at the Howard University College of Medicine and Georgetown University Medical Center in Washington, D.C. Jessie’s fellowship is funded by the American Physiological Society and through a grant from the National Heart, Lung and Blood Institute (Grant #1 R25 HL115473-01). After graduation, Jessie plans to attend medical school and become a pediatric cardiologist.

Using CRISPR to Explain the ART of Artemisinin Analogs
Suhayl Khan
Senior, Health Science
Benedictine University
2019 STRIDE Fellow

My Research Project

Diagram showing how the CRISPR-Cas9 editing tool works.

Artemisinin is a drug derived from the Artemisia annua plant. It is known for its anti-malarial properties, but has also been found to have anti-cancer properties. The active portion of artemisinin is an oxygen-oxygen bond called an endoperoxide. When in contact with free iron in a cell, this endoperoxide breaks and creates oxygen radicals which are extremely reactive. These oxygen radicals then proceed to react with cellular components such as membranes and proteins which eventually leads to cell death. Previously, it had been found that DMR1 and HSM2—two analogs of artemisinin— are particularly effective in inducing cell death in cancer cell lines but not in normal cell lines. This summer, my lab and I worked on figuring out why this is so.

 

It has been found that cancer cells contain a higher iron concentration than normal cells. This higher iron concentration is due to higher concentrations of transferrin receptors—the receptor that transports iron into the cell— in cancer cells when compared to normal cells. We believe that the specificity of our artemisinin analogs to cancer cells is due to the higher concentration of iron in cancer cells. To test this, we planned to use Clustered Regularly Interspaced Short Palindromic Repeats, or CRISPR, a gene editing technique that can remove the transferrin receptor gene in lung cancer cells. Then, we would test our analogs on these transfected cells to determine if a lower iron concentration would show the analogs as ineffective. However, we were unable to test our analogs on the transfected cells because the transfected cells died three days after successful transfection. This proved to us that transferrin receptor is required for cell growth and the proliferation of cancer cells, and that cancer cells cannot survive with low iron concentrations. In the future, we plan on using CRISPR to overexpress the transferrin receptor gene in normal lung cells and testing our analogs on these cells to see if the specificity of our artemisinin analogs is indeed due to iron concentration within the cell.

Realities of Research

Cell culture flasks and media in a laminar airflow hood.

Doing research this summer has been very enlightening. In all honesty, before starting research, I imagined it to be a bit boring. I couldn’t see myself really enjoying sitting at a bench and waiting for experiments to run and cells to grow. Surprisingly, when doing research on a subject that you enjoy, it all becomes very exciting. I have learned so much about cell culture techniques and how to maintain a lab this summer. I found myself waiting in anticipation for an experiment to finish because I was so curious to know the results.  I couldn’t wait for cells to grow to large, usable percentages because I wanted to get the next experiment running. Admittedly, it was always disappointing when certain experiments didn’t go as planned or when a lengthy experiment needed to be done multiple times due to errors in previous runs. However, I have learned that even when experiments yield unexpected results, those results still contribute to the research we are conducting. It is not uncommon for an experiment to produce strange results that only make sense after hours of thinking “How could this have happened?” Fortunately, all data that we obtained this summer—expected and unexpected—contributed to my original hypothesis

Life as a Scientist

My day-to-day life as a scientist consisted of waking up early, getting to lab and checking on the cells. Every Monday, Wednesday and Friday the cells have to be fed. If they have grown exponentially, they needed to be split into a new flask. The cell media must be warm, so I had to turn the water bath on and place tubes of media in the bath well before I needed them. I checked the cells under a microscope and estimated the amount of cell growth of each individual flask. If a flask had less than 80% cell growth, the media needed to be discarded and replaced. If a flask had cell growth of 80% or above, then the cells needed to be removed from the current flask and placed into a new one to give them more room to grow. After feeding and splitting was completed, I met with my research mentor and discussed what needed to be done for the rest of the day. The biggest surprise about being a scientist was realizing how little I know about my field of research. Going into research, I believed that I had decent knowledge of physiology and biochemistry. Despite this, I spent every day learning something new and interesting about these fields. My favorite part about research is that there always seems to be more to do. Because of this, there was never a moment where I was bored with nothing to do. That being said, my least favorite part was that there were certain days where an experiment was particularly long and I found myself either overwhelmed with the amount of work to be done or exhausted by the amount of work I completed. Fortunately, working as part of a lab team took a huge amount of stress and burden off of my shoulders. It was very nice to have people to talk to and help me out whenever I need help with a task. Overall, life as a scientist is very rewarding and I have learned so much since I started research this summer.

Suhayl Khan is a senior majoring in health science at Benedictine University in Lisle, Ill. He is a 2019 Short-Term Research Education Program to Increase Diversity in Health-Related Research (STRIDE) Fellow working in Dr. Jayashree Sarathy’s lab at Benedictine University. Suhayl’s fellowship is funded by the American Physiological Society and a grant from the National Heart, Lung and Blood Institute (Grant #1 R25 HL115473-01). After graduation, Suhayl plans to pursue a Master of Healthcare Administration or Master of Public Health.

Protecting the Miracle of Childbirth

The spectacular process of human reproduction is complex, time consuming, and, above all, fascinating! Much has been learned over the years dealing with the mechanisms of pregnancy in many of Earth’s lifeforms. The research on genetics, like uncovering the entire human genome, makes incredible strides toward fully grasping why certain physiological processes happen. However, there are still numerous question marks, specifically speaking about women’s health during pregnancy and after, that require research and understanding. Full efforts are being undertaken that aim to ultimately lead to safer pregnancies, better means of treating diseases, and developing new techniques.

Research Project

Preeclampsia is a disorder during pregnancy characterized by high blood pressure and excess protein excretion. Because the condition is not entirely understood, treatment options are far and few between for women suffering. Currently, the only remedy is a low-dose treatment of aspirin. The effects and mechanisms of this aspirin treatment is not completely understood either, so the purpose of my study is to attempt to demystify the workings of the treatment. Specifically, I am targeting human trophoblast cells, the major cell type involved in the development of the placenta, an organ that provides nutrition to the developing fetus. By varying different doses of aspirin, I am examining the changes, or lack of change, in the trophoblast DNA. If changes are observed, we will have knowledge on how and if aspirin will help women suffering from preeclampsia, which will ultimately lead to a safer pregnancy for both the mother and child.

Realities of Research

It has been an exciting experience working in a research lab. Not only have I learned valuable techniques, but I am directly impacting the future of medicine, even if it is in a seemingly small way. I have been surprised by the level of attention and precision that is addressed when conducting research. I always knew that attention to detail was important, but the extent to this precision that I have been performing has shocked me along with how these techniques were practiced. For example, RNA isolation is a delicate, yet simple process that requires attention and a good grasp on how to pipette well. If a step is skipped, such as forgetting to add the homogenate additive, then the RNA yield could be put at risk. It is too early in my research stages where results and conclusions can be made. Typically, one trial of cell growth requires one full week, so multiply one trial by the many that we are attempting and the overall experiment becomes lengthy.

Life of a Scientist

The day-to-day life of a young scientist has been exciting. While not all of the parts of my day are groundbreaking and entertaining, it is still a rewarding process. I usually begin my day with notebook entries, planning, and reading up on current events in my field. My research involves a fairly strict time schedule, so in the afternoon, the experimenting and cell ‘farming’ as I call it, can begin. I was surprised by the equipment that I have at my fingertips.  Nothing is more thrilling than looking through a $45,000 microscope or running a 6 well plate through a machine that you can’t even pronounce. The best part so far for me has been the adjusting to a real life laboratory. I have begun to entertain the idea of having my own lab in the future, and becoming familiar with how a lab is run has been a wonderful experience. The worst part has been the waiting that is required between experiments. It makes me wish I had a magic wand that would make the cells grow and be ready for testing at the flick of my wrist. It has been so wonderful working with everyone in my lab. I love the feeling of having an independent project, but still being under a larger umbrella of research with my coworkers where we can discuss information and findings.

 

Brandon Cooley is a junior at the University of Iowa where his is studying biology. His future plans involve graduation with his degree and enrolling in an MD/PhD program where he can further develop his researching skills while being present as a clinician in a hospital!
Novel Mechanisms of Preeclampsia Prevention via SGK1 and Corticosteroids

Preeclampsia, a hypertensive disorder in pregnancy, affects more than 6 million pregnancies per year worldwide. It is a dangerous condition during pregnancy which involves high blood pressure, proteinuria, and swelling. The Santillan lab has shown that single dose early of BMTZ early in pregnancy will reverse late pregnancy hypertension and proteinuria (1). The molecular mechanism by which this reversal occurs is unclear. One potential pathway involves serum/glucocorticoid regulated kinase 1 (SGK1), a serine/threonine kinase stimulated by corticosteroids. SGK1 dysregulation and human genetic variants in SGK1 have been associated with hypertension. The overall goal of this study is to determine whether SGK1 and its regulation play a role in preeclampsia.  If so, BMTZ has the potential to prevent preeclampsia in humans. Because mir-365 has been shown to decrease SGK-1 expression in human placentas from pregnancies with poor placentation, I will examine the effect of vasopressin and SGK1 in placental cells on mir-365 expression. In addition, it will be determined if placental mir-365a-3p is differentially expressed in human preeclampsia. This project is significant because it may help to determine how BMTZ protects from preeclampsia and whether BMTZ could be useful in humans.

 

Research in the lab can be very stressful. Things may not go as well as expected and troubleshooting is a process. Regardless, I had the opportunity to learn many new techniques that would help me in the future. I was surprised how research is comprised of so many different aspects. A little difference in one experiment may change the whole outcome. I learned a great set of skills like how to maintain a cell culture, perform an ELISA, BCA, and extract RNA. It took a while for me to start up on my experiments because I had to research some more background information to ensure I knew what I was doing. My experiments went smoothly, but it was later found that the drug I was using to treat the cells was not working in our mouse model; therefore, it may not be working with my cells as well. My project was put to a halt to first determine if the drug was correctly performing. The drug was aliquoted about a year ago and may have degraded. I would have to wait in order to determine whether I was able to continue or to start over. In the meantime, I worked with my mentor with small projects and learned useful techniques. Additionally, I worked on the second portion of my project involving whole placental tissues. The tissues were RNA prepped and analyzed via qPCR. The results showed that there was a significant difference with p-value of 0.016. This makes sense because Xu found that miR-365 negatively regulates IL-6 and it, in turn, is transcriptionally regulated by Sp1 and NF-κB. (2) So, transcriptional down-regulation of miR-365 should result in increased IL-6. This was interesting to hear, but we cell culture was needed to determine this and it was on standstill.

 

There were some busy days and other days there was a lot of down time. For example, one day there may be multiple tests to complete in a day, other days an experiment would consist of wait time. The most surprising part of participating in the lab is that I realized that a lot of the down time is used to write papers or grants. Research involves a great deal of writing to express the study to the public eye and document previous studies to help ongoing studies. I am appreciative of researchers because without those papers I would not have been able to understand my study without background information. Most days were very stressful trying to balance all of the work and trying to understand why a certain mechanism happened. My least favorite part during my time in the lab was working so hard on an experiment and in the end, not having it work out. The best part was working along with my mentor to learn new techniques and tests. I’m also glad that people around the lab worked well with one another and that they would take the time to reach out and teach me.

 

References:

  1. Santillan, M., Santillan, D., Scroggins, S., Min, J., Sandgren, J., Pearson, N., Leslie, K., Hunter, S., Zamba, G., Gibson-Corley, K. and Grobe, J. (2014). Vasopressin in Preeclampsia: A Novel Very Early Human Pregnancy Biomarker and Clinically Relevant Mouse Model. Hypertension, 64(4), pp.852-859.
  2. Xu et al. miR-365, a Novel Negative Regulator of Interleukin-6 Gene Expression, Is Cooperateively Regulated by Sp1 and NF-κB. Journal of Biochemistry 286: 21401-21412, 2011
Carolyn Lo is a junior majoring in Human Physiology and Biochemistry at the University of Iowa in Iowa City, Iowa. She is a 2018 Short-Term Research Education Program to Increase Diversity in Health-Related Research (STRIDE) Fellow working with Dr. Mark Santillan at the Carver College of Medicine in Iowa City, IA. Carolyn’s fellowship is funded by the APS and a grant from the National Heart, Lung and Blood Institute (NHLBI) (Grant #1 R25 HL115473-01). After graduation, Carolyn plans to pursue a doctorate degree in medicine.
Going from Textbooks to Reality: Creating Preventive Medication for Negative Effects of Radiation on the Heart

Possible Preventives That May Decrease the Negative Effects of Radiation on the Heart

With the possibility of radiation exposure from terrorist attacks or accidents, the need for radiation research is needed. In simple terms, our research has shown the negative effects of radiation on the cardiovascular system. Our study involved a mouse model, in which the results found from the mice were effectively comparable to the effects appearing in humans. We used a LD50 (lethal dose that kills about 50%) dose of radiation when we radiated the mice. We noticed a peak in detrimental effects in the loss of cells that line the blood vessels at two weeks, and interestingly, we also found an increase of iron present in tissue and serum. We have been studying the use of two different iron inhibitors to try to decrease the amount of iron in the tissue to see if there would be any effect on the tissue thickness. Recently, we found that the data suggest that somehow the increase of iron is related to thinning of the arterial tissue! This recent discovery is exciting because it shows that we may be on the right track toward helping create a radiation preventative medication. One matter to keep in mind is that our study has involved such a high dose of radiation that is not commonly prevalent; however, that high of a level of radiation may occur through accumulative radiation used to battle cancer. This research may prove to be beneficial to those at risk of high radiation exposure.

I believe that the word “research” automatically implies a difficult endeavor. However, it was a contrast to what I formally thought research would entail. One of the lessons I learned early on was that in the beginning mistakes are inevitable and mistakes are detrimental… Any minor mistake could likely cause the whole procedure to go down the drain (literally). One specific error that had occurred in lab happened on the very final step. My partner and I were using a multiple-micro-pipette to fill a series of wells that would eventually read the concentration level. However, we failed to remember to check the calibrator value (the calibrator value is the number shown on the side of the pipette and is easy to adjust to the amount that you need to use) and the volume increased from about 100 to 200 microliters. Anyone who has done research knows that that difference was huge. Not only did we run out of the solution before we could fill the last two rows of the wells, but all the other wells’ concentrations were off…Blood rushed from our faces, as we realized what had happened. Thankfully, our Principal Investigator (PI) was so patient and understanding, even though we had completely ruined days’ worth of research. One saying that our PI would repeat is, “After you make a mistake, you won’t ever make it again.” Regardless of the seemingly simplicity of some steps, I’ve begun to understand the extent of that statement because when you make a mistake you feel nauseous and learn to be more conscious of each step.

So yes, there were mistakes and that has caused me to be more appreciative of lab work and much more careful. But there were also “ah-ha!” moments that were so joyous! The feeling of finding out game-changing results after tedious, multi-procedural projects, made up for everything. It’s been wonderful digging deep in other research articles to come up with possible studies to apply to our research. One particular beauty that comes with research is that you are looking into things that no one has been able to figure out before! In front of you lies a puzzle that looks impossible to put together, but slowly yet surely, the pieces begin to line up. Soon others get on board and offer advice on which puzzle pieces may fit more properly, and then a picture begins to form.

Day-to-Day of a Scientist

Starting off the day was relaxing, as we would begin to prepare for a busy day. Our PI made extra coffee for those in the lab, providing a social aspect of community amongst us. I worked closely alongside another undergraduate and a high school student, along with my PI. My PI and the other undergraduate (as she had been in the lab for a few years because of a local STEM program) were extremely helpful at explaining what we were doing. It felt like we were a team, all working together for the good of others. From periods of seriousness to times of laughter, friendships bloomed. In the university lab setting it was a much more intense atmosphere struggling to finish a three hour (+) lab before your next class. Usually, you wouldn’t finish, and you would have to work on it later in the evening. I was surprised to find that even though I was in the lab for 8 to 9 hours a day, it didn’t feel nearly that long. Mistakes were more crucial in the research lab setting than in a lab for class; however, the benefit of the results of the experiment were more satisfying. You didn’t always know what the end results would be, and those results would affect what you were going to focus on next. I absolutely loved the experience of research because what we have been studying has meaning and will likely one day benefit others! It’s been a rewarding summer. I came in struggling to understand most of the abstract to desiring to learn even more than I could have ever imagined.

 

Abbey Russell is a junior majoring in Biology at the Taylor University in Upland, IN. She is a 2018 Short-Term Research Education Program to Increase Diversity in Health-Related Research (STRIDE) Fellow working in Dr. Steven Jeffrey Miller’s lab at the Indianapolis University School of Medicine in Indianapolis, IN. Abbey’s fellowship is funded by the APS and a grant from the National Heart, Lung and Blood Institute (NHLBI) (Grant #1 R25 HL115473-01). After graduation, Abbey plans to pursue a career as a medical physician or surgeon who also does academia research.