Tag Archives: undergraduate research

2018 Summer of Science – Out of Breath

Research Project

My research project this summer has focused on evaluating lung function in patients with cystic fibrosis (CF), a disease that causes excessive mucus build-up in the lungs and digestive organs. Symptoms include substantial breathing difficulty and exercise intolerance, and patients with CF undergo hours of treatment per day that involve medication, chest physiotherapy, and exercise. One important medication is albuterol, a bronchodilator that ensures the delivery of antibiotics, steroids, and other inhaled treatments to airway tissues.

To assess lung function, these patients regularly do breathing tests where, after taking in a full breath, they breathe out as hard and fast as possible. I have been using a mathematical measure, called “slope ratio”, to evaluate these breathing tests and investigate the impact of albuterol and/or exercise on lung function. Lower slope ratios indicate improved airway function, and we hypothesized that albuterol and exercise would decrease slope ratios. My research may aid understanding of how albuterol and exercise affect the lung, which might eventually lead to better treatment strategies for lung disease.

Patients with CF performed the above-mentioned breathing tests during three separate visits: 1) after inhaling albuterol, 2) after exercise, and 3) after both albuterol and exercise. Following this data collection, research has been heavily data-based: the data from just nine patients took weeks to fully analyze. However, developing a conceptual understanding of “slope ratio” kept me engaged; I also developed my skills with writing code (i.e. macros in Excel) to streamline my data analysis, which was a fun learning experience. The results we obtained from our slope ratio analyses closely matched our research hypotheses, were quite interesting to interpret and made logical sense regarding the effects of albuterol and moderate-intensity exercise. Briefly, we found that albuterol decreased slope ratios significantly, suggesting albuterol improves airflow and drug delivery in previously congested airways.

Realities of Research

Mentally, scientists have to remain vigilant; when they encounter contradictions to their prior knowledge, they critically re-evaluate their hypotheses and conceptual understanding. I enjoyed interpreting results and discussing hemoglobin/slope ratio concepts with post-docs in the lab, both one-on-one and in daunting lab meetings. And while it was difficult to work with seemingly-endless data, learning how to write macros helped me to be productive, learn a new coding language, and keep myself engaged.

 

Winston Guo is a junior and Neuroscience major at the University of Minnesota- Twin Cities in Minneapolis, MN. He is a 2018 Undergraduate Research Excellence Fellowship (UGREF) recipient, and is working in Dr. Michael Joyner’s Human Integrative Physiology Lab at the Mayo Clinic in Rochester, MN. Winston’s fellowship is funded by the APS. After graduation, Winston hopes to attend medical school and eventually become a practicing physician.
Learning to Become a Researcher

When people or animals feel threatened, their sympathetic nervous system, a.k.a. ‘fight-or-flight’ system, releases chemicals that increase their blood pressure and heart rate to prepare for fighting or fleeing danger.  Unfortunately, when someone is obese or eats a chronically high-fat diet, their fight-or-flight system can be in an almost permanent state of overdrive.  This can place too much strain on the heart and blood vessels, potentially leading to hypertension (high blood pressure) and subsequent cardiovascular disease such as a heart attack or stroke.  My research project for the summer was to identify specific pathways in the mouse brain that influence the fight-or-flight response.  More specifically, I aimed to determine how inhibition of the dorsomedial hypothalamus (an area of the brain) by neuropeptide-Y (a brain-specific chemical messenger) leads to decreased activity in the fight-or-flight system.  By determining how various chemicals and pathways in the body and brain influence the fight-or-flight system, we may be able to find new treatments for people who have hypertension, hopefully increasing their longevity by decreasing their risk for serious conditions like heart attack or stroke.

 

Working in a research lab is simply amazing.  There is an almost endless amount of techniques, equipment, and software available to learn how to use.  This summer I have learned how to perform immunohistochemistry, how to use a confocal microscope, and how to utilize different analysis software programs to interpret results from fluorescent images.  If time permits, I may even learn how to perform microinjection surgery on a mouse and how to use RNAscope to complement my immunohistochemistry experiments.

 

Two things that surprised me about working in a research lab were how time-consuming experiments can be, and how expensive research supplies are.  For instance, it takes a minimum of sixteen days post-injection before the mouse brains are ready for me to begin processing them.  The brains must then be frozen, sectioned, immunohistochemically treated, mounted onto slides, then imaged, all of which adds up to around thirty hours of processing for a set of three or four brains.  Additionally, much of the processing utilizes expensive solutions and equipment, such as the $400 primary antibody used in the immunohistochemistry, or the fluorescent microscope which costs around $55/day to use for imaging.  This experience helped me to realize the importance of organization, precision, and time-management when conducting an experiment, since any mistake could result in hundreds of dollars wasted and countless hours lost.  Thankfully the experiments I’ve conducted so far this summer have turned out great, and I look forward to starting my next large batch of experiments next week.

 

The day-to-day life of a scientist is highly variable based on my experience this summer.  During any one week I might complete a variety of different tasks based on the needs of my research project as well as the needs of my lab colleagues. While there are general deadlines to be met for certain things and some experiments that require assistance from others, for the most part I am free to schedule which tasks I will be working on for any given day.  One downside to working in research is that since certain equipment is too expensive for each lab to have one of their own, it must be purchased and shared by the whole department.  For instance, the fluorescent microscope that I use is a very popular tool for the type of research done in our department, so you must make a reservation in order to use it.  Unfortunately, if your imaging is taking longer than expected and you didn’t reserve enough time on the microscope to finish, you could end up waiting an entire week before another reservation is available.  Thankfully, with careful planning, this problem can usually be avoided.

 

Overall, working in research as part of a team with the members of my lab has been wonderful.  Each person has their own unique background in research, and since I’m the most junior member of the lab there is a wealth of knowledge I can learn from each of them.  I truly appreciate how much each of my lab colleagues is willing to teach me what they know, provide answers to my questions, and give me guidance for not only my research project, but for my education and career goals as well.

 

Alyssa Bonillas is a senior at Portland State University in Portland, OR, majoring in both Biology and Psychology.  She is a Hearst Fellow working in Dr. Virginia Brooks’ lab at the Oregon Health & Science University in Portland, OR.  Alyssa’s fellowship is funded by APS through a grant from the Hearst Foundation.  After graduation, Alyssa plans to further her education by completing an MD/PhD program, and continuing on to become a physician-scientist at an academic research institution.
Going from Textbooks to Reality: Creating Preventive Medication for Negative Effects of Radiation on the Heart

Possible Preventives That May Decrease the Negative Effects of Radiation on the Heart

With the possibility of radiation exposure from terrorist attacks or accidents, the need for radiation research is needed. In simple terms, our research has shown the negative effects of radiation on the cardiovascular system. Our study involved a mouse model, in which the results found from the mice were effectively comparable to the effects appearing in humans. We used a LD50 (lethal dose that kills about 50%) dose of radiation when we radiated the mice. We noticed a peak in detrimental effects in the loss of cells that line the blood vessels at two weeks, and interestingly, we also found an increase of iron present in tissue and serum. We have been studying the use of two different iron inhibitors to try to decrease the amount of iron in the tissue to see if there would be any effect on the tissue thickness. Recently, we found that the data suggest that somehow the increase of iron is related to thinning of the arterial tissue! This recent discovery is exciting because it shows that we may be on the right track toward helping create a radiation preventative medication. One matter to keep in mind is that our study has involved such a high dose of radiation that is not commonly prevalent; however, that high of a level of radiation may occur through accumulative radiation used to battle cancer. This research may prove to be beneficial to those at risk of high radiation exposure.

I believe that the word “research” automatically implies a difficult endeavor. However, it was a contrast to what I formally thought research would entail. One of the lessons I learned early on was that in the beginning mistakes are inevitable and mistakes are detrimental… Any minor mistake could likely cause the whole procedure to go down the drain (literally). One specific error that had occurred in lab happened on the very final step. My partner and I were using a multiple-micro-pipette to fill a series of wells that would eventually read the concentration level. However, we failed to remember to check the calibrator value (the calibrator value is the number shown on the side of the pipette and is easy to adjust to the amount that you need to use) and the volume increased from about 100 to 200 microliters. Anyone who has done research knows that that difference was huge. Not only did we run out of the solution before we could fill the last two rows of the wells, but all the other wells’ concentrations were off…Blood rushed from our faces, as we realized what had happened. Thankfully, our Principal Investigator (PI) was so patient and understanding, even though we had completely ruined days’ worth of research. One saying that our PI would repeat is, “After you make a mistake, you won’t ever make it again.” Regardless of the seemingly simplicity of some steps, I’ve begun to understand the extent of that statement because when you make a mistake you feel nauseous and learn to be more conscious of each step.

So yes, there were mistakes and that has caused me to be more appreciative of lab work and much more careful. But there were also “ah-ha!” moments that were so joyous! The feeling of finding out game-changing results after tedious, multi-procedural projects, made up for everything. It’s been wonderful digging deep in other research articles to come up with possible studies to apply to our research. One particular beauty that comes with research is that you are looking into things that no one has been able to figure out before! In front of you lies a puzzle that looks impossible to put together, but slowly yet surely, the pieces begin to line up. Soon others get on board and offer advice on which puzzle pieces may fit more properly, and then a picture begins to form.

Day-to-Day of a Scientist

Starting off the day was relaxing, as we would begin to prepare for a busy day. Our PI made extra coffee for those in the lab, providing a social aspect of community amongst us. I worked closely alongside another undergraduate and a high school student, along with my PI. My PI and the other undergraduate (as she had been in the lab for a few years because of a local STEM program) were extremely helpful at explaining what we were doing. It felt like we were a team, all working together for the good of others. From periods of seriousness to times of laughter, friendships bloomed. In the university lab setting it was a much more intense atmosphere struggling to finish a three hour (+) lab before your next class. Usually, you wouldn’t finish, and you would have to work on it later in the evening. I was surprised to find that even though I was in the lab for 8 to 9 hours a day, it didn’t feel nearly that long. Mistakes were more crucial in the research lab setting than in a lab for class; however, the benefit of the results of the experiment were more satisfying. You didn’t always know what the end results would be, and those results would affect what you were going to focus on next. I absolutely loved the experience of research because what we have been studying has meaning and will likely one day benefit others! It’s been a rewarding summer. I came in struggling to understand most of the abstract to desiring to learn even more than I could have ever imagined.

 

Abbey Russell is a junior majoring in Biology at the Taylor University in Upland, IN. She is a 2018 Short-Term Research Education Program to Increase Diversity in Health-Related Research (STRIDE) Fellow working in Dr. Steven Jeffrey Miller’s lab at the Indianapolis University School of Medicine in Indianapolis, IN. Abbey’s fellowship is funded by the APS and a grant from the National Heart, Lung and Blood Institute (NHLBI) (Grant #1 R25 HL115473-01). After graduation, Abbey plans to pursue a career as a medical physician or surgeon who also does academia research.