Tag Archives: undergraduate

STRIDE, Statins, and Scientific Research: The Perfect Way to Spend Summer Vacation

After googling the definition of the word science, one will find that it means “the intellectual activity encompassing the study of the structure and behavior of the physical world through observations and experiments.” In simpler terms, science is about being curious and learning all that one can about something in order to better understand it. That is exactly what I have had the opportunity to do this past summer under the APS STRIDE fellowship program.

 

Research Project

 In scientific research, to start designing a project, one must first come up with or ask a question that nobody really knows the answer to. With that, something many people don’t know is that high cholesterol has no symptoms; therefore, many people do not even know they have high cholesterol levels. And those who are being diagnosed are being prescribed medication to lower their risk for developing heart disease and decreasing their chances for having a stroke (2). These medications being prescribed, called statins, are one of the most effective cholesterol-lowering drugs available. However, approximately 10-12% of patients taking statins develop muscle pain and dysfunction, which can be intensified with exercise (1). It is unclear as to how exercise and statins work in combination to yield these side effects. Yet, it is important to gain a better understanding as to how they work together to affect one’s health. Therefore, I have been currently researching the effects of the mixture of these two treatments in ApoE-/- mice, whom genetically have high cholesterol, in hopes of generating new insight as to how statins and exercise impact the health of individuals with hypercholesterolemia to contribute to the development of the most successful treatment options that decrease the severity of complications (3).

 

Realities of Research

This fellowship has allowed me to develop not only a greater understanding for the science behind the subject of the project itself, but also for the process and effort to perform and accomplish the project as a whole. What is fascinating about conducting research is that each day presents something different to be accomplished or overcome. I was most surprised by how much planning, preparation, and practice must be done prior to the actual start of a project. Whether it is acquiring supplies, matching up schedules, or deciding what types of experiments to conduct, it all takes time and dedication to ensure that the project runs smoothly. With that, I also had to learn and practice new techniques, such as injecting the mice with statin medication, training the mice, performing muscle dissections, and developing tissue samples to analyze protein levels. With what we’ve accomplished so far, there is no specific data that indicates a major difference between the effects of exercise alone and exercise in combination with statin in mice with high cholesterol. However, we hope to see some difference in muscle force between the two groups after we finish our experiments, in which we then plan to determine if there is a cellular basis that is being affected by the statin medication that is causing a difference. And if there’s no variance, then we know that this specific model doesn’t support our original theory. We would next look at a different element of force, such as endurance instead of strength. But the reality and beauty of research is that you never know what you’re going to find.

Life of a Scientist

Not knowing what to expect is one of the best and worst parts of the life of being a scientist. It is not a typical Monday through Friday 9:00am – 5:00pm job where you do the same thing every single day. You’re constantly learning new things and applying what you have learned to something new; you make connections from the past to the present to try and understand how concepts are related yet different. But even with these enlightening moments, there can be downsides, too. Challenges are thrown at you every day, whether it’s scheduling conflicts, flooding issues, or the results don’t turn out like you expected. Again, that’s where the art of science comes along, in that one must learn how to overcome these obstacles by becoming adaptable to every situation, thinking creatively to find a new route or how one can stay on their original path, and collaborating with others to share ideas as how to approach each step.

This summer has been about STRIDE, statins, and scientific research all of which have inspired me to never stop learning, to never stop questioning, and to never stop searching for an answer. It doesn’t matter if one is titled as a scientist or not, these are actions everyone should implicate into their lives to learn about themselves and their passions and to learn more about the world around them.

 

McKenzie Temperly is a junior majoring in Health Sciences – Clinical & Applied and minoring in Chemistry at Drake University in Des Moines, IA. She is a 2018 Short-Term Research Education Program to Increase Diversity in Health-Related Research (STRIDE) Fellow working in Dr. Kimberly Huey’s lab at Drake University.  McKenzie’s fellowship is funded by the American Physiological Society and a grant from the National Heart, Lung, and Blood Institute (Grant #1 R25 HL115473-01). After graduation, McKenzie plans to attend medical school and pursue an M.D./Ph.D. degree. She is currently interested in specializing in general/orthopedic surgery or emergency medicine intermixed with biomedical research within her chosen field.
Apoptosis! How Endoperoxides Could Be a Difference

Artemisinin – also known as Qinghoasu – is produced by the sweet wormwood tree Artemisia annua. For hundreds of years, unaware of its potential in treating cancer and malaria, the sweet wormwood tree was used in ancient Chinese medicine to treat fevers, which we now know were caused by the Malarial parasite. It wasn’t until 1972 that the Chinese scientist Youyou Too and her collaborators isolated the active anti-cancer and anti-malarial ingredient from Artemisia annua, Artemisinin. The active portion of Artemisinin is an oxygen-oxygen bond that forms free radicals when exposed to iron. These free radicals then disrupt cellular function, thereby inducing cell death. In the case of cancer cells, research has shown that most types of cancer cells have increased intake of iron compared to non-cancerous cells. As a result, iron reacts with Artemisinin, producing free radicals, inducing apoptosis, and causing cell death. Therefore, Artemisinin may also be effective when treating cancer. However, despite Artemisinin’s effect on cancer and malaria, there are disadvantages to its usage. Since Artemisinin constitutes less than only about 1% dry weight of the sweet wormwood plant it has limited availability in developing countries and it is very costly to extract. Additionally, the original Artemisinin molecule has trouble reaching its target due to its limited bioavailability. Therefore, we have synthesized analogues of Artemisinin that have the same oxygen-oxygen bond as the original Artemisinin molecule but are smaller and inexpensive to make. This Summer, my lab and I have been testing the novel analogues on A549 lung cancer, MCF7 breast cancer, BEAS-2B normal lung, and MCF10A normal mammary cell lines to see the effect of the analogues on inducing cell death. We have witnessed an increase in cell apoptosis in cancerous cells and not in normal cells and will continue testing the various analogues to find the one with the greatest efficacy at the lowest dose. 

Realities of Research

In my journey as a researcher, I have learned a lot about the advantages and downfalls of researching. Before entering Benedictine University, there was a stigma in my mind towards researching. I couldn’t imagine myself sitting in a lab because the idea of this sounded monotonous and unpleasing. Once I began researching, I realized the importance of it, making me love what I do now. Witnessing the novel drugs killing cancer cells was fascinating and exciting because I was able to make useful discoveries. Furthermore, I have gained knowledge on how to maintain various cancer and normal cell lines using proper cell culture protocol. I have seen just how easily cells can become contaminated and the headache involved with sterilizing everything and starting over. I have learned to follow safety protocols better to prevent future contamination. Additionally, I have become fluent in the usage of various lab equipment and techniques including the flow cytometer, absorbance reader, fluorescence microscope, Western Blotting, and protein assays. Having to perform some of these experiments multiple times due to errors I’ve made has helped me better my technique. Although not all the experiments I completed turned out how I wanted due to human error, the experiments that went correctly supported my original hypothesis.

Life of a Scientist

The day in the life of a scientist begins early in the morning. I wake up, get ready, and am in the lab by 9:00 am daily. Every Monday, Wednesday, and Friday I begin the day by placing media to feed the cells in the water bath. While the media is warming up, I check confluency of the cells to determine whether I need to split them or just feed them. From there, I feed or split cells, clean the hood, and continue with the rest of the day. I then go to my research mentor’s office to determine which experiments need to be completed first, conduct those experiments, and end the day discussing the results. The best part of being a student researcher is the flexibility. I can do so many unique experiments with the cells I am growing, allowing me to test various things simultaneously. Additionally, I have a phenomenal research team and we enjoy conversing with one another. The worst part of researching is the long hours spent in the lab. It does get exhausting to be in the lab all day, however, with my great research group I find ways to help the time pass by. Researching has shown me the importance of interdisciplinary work with the collaboration between the organic chemistry lab and my lab, as well as the importance of effective communication.

 

Mohammed U. Haq is a senior majoring in Health Science at Benedictine University in Lisle, IL. He is a 2018 Undergraduate Student Research Fellow (UGSRF) working in Dr. Jayashree Sarathy’s physiology lab at Benedictine University in Lisle, IL. Mohammed’s fellowship is funded by APS. After graduation, Mohammed plans to pursue a career in medicine with an interest in conducting research in medical school.